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ABSTRACT
The accurate simulation of lead–acid batteries

requires the use of sophisticated models based on
first principles containing many parameters. Ex-
isting methods for parameter identification often
fail due to many local minima of the error function
or the high computational needs to cover the pa-
rameter space. Therefore a novel approach for pa-
rameter identification with complex physical mod-
els containing many unknown parameters is pre-
sented. It is based on the utilization of available
expert knowledge regarding specific model param-
eters. The expert knowledge is integrated through
fuzzy control and combined with stochastic opti-
mization algorithms for solving the battery identi-
fication problem.

INTRODUCTION
The accurate simulation of lead–acid battery

cells is of growing interest in the automotive in-
dustry, especially in hybrid and electric vehicle
technology. The battery is a fundamental compo-
nent of the powertrain of such vehicles. Its non-
linear behavior under various operating conditions
has to be considered for the implementation of new
drive concepts. Various models for lead–acid bat-
teries exist which are based on a detailed descrip-
tion of the electrochemical, thermal and transport
processes in the battery [1–5]. The models consist
of systems of partial differential equations that are
highly nonlinear and depend on several different
parameters. Many of them can only be measured
with elaborate, often destructive methods, while
some cannot be measured at all. The only quan-
tities that are easily accessible are the cell voltage
and the cell current. There is an increasing need

for a fast parameterization of the battery models
at low cost since the parameters of batteries from
different manufacturers show considerable differ-
ences. In addition, the values depend on the state
of health of the battery. They are slowly changing
with time. This long–time behavior of the batteries
cannot be predicted by present models. A frequent
re–parameterization is therefore necessary.

Classical approaches to parameter identifica-
tion very often fail to satisfy the demands for ac-
curacy and speed. A new approach for parameter
identification of batteries was therefore developed.
It tries to utilize all available knowledge about the
model parameters to achieve a better performance.
The method is solely based on the measurements
of cell current and cell voltage. These quantities
can be obtained very easily and with low cost. The
available expert knowledge is built into a fuzzy
controller [6]. The resulting control loop is em-
bedded in a Genetic Algorithm (GA) [7].

The following section gives an introduction
to the used lead–acid battery model. After that
the novel parameter identification method is de-
scribed in detail, including the accumulation of ex-
pert knowledge, the fuzzy control loop and the GA.
The identification results for a real battery are af-
terwards presented, followed by some concluding
remarks on the presented identification method and
future developments.

LEAD–ACID BATTERY MODEL
The used battery model (based on [1–5]) de-

scribes a single lead–acid battery cell with starved
electrolyte. Originated on electrical, chemical,
thermal, physical and material transport phenom-
ena the formulation is based on a macroscopic de-
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scription of porous electrodes. The cell consists
of a porous PbO2 electrode with conductivity σ1,
a porous Pb electrode with conductivity σ3 and a
porous non–conducting separator in between (fig-
ure 1).
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Figure 1: Cross–section of the cell model: Porous
PbO2 (left, region 1) and Pb (right, region 3) elec-
trodes; a porous separator (middle, region 2)

Acid with conductivity κ is present in each of
the regions. For the model it is a reasonable simpli-
fication to consider space coordinates in only one
dimension (thus all quantities are related to the ge-
ometrical area of the electrodes).

The amount of the materials, which is a func-
tion of space and time are described by volume
fractions for the solid and for the liquid phase (εs

and εl):
∂εs

∂t
= K1jmain (1)

∂εl

∂t
= K2jmain + K3jO2

+ K4jH2
(2)

jmain, jO2
and jH2

are the current densities due to
the main charge/discharge-, oxygen- and hydrogen
reaction which are defined separately for region 1
and 3 labelled by an additional subscript, as:

jmain,1 = amaxi0 (1 − U)ζ ·

L1amaxkPbSo4
Uζ

[

1 − e−(αa+αc)L2η
]

amaxi0 (1 − U)
ζ

+ L1amaxkPbSo4
Uζe−αaL2η

(3)

jmain,3 = amaxi0 (1 − U)
ζ
·

jO2
+ L1amaxkPbSo4

Uζ
[

e(αa+αc)L2η − 1
]

amaxi0 (1 − U)
ζ

+ L1amaxkPbSo4
UζeαcL2η

(4)

jH2,1 = L3amaxkm,H2
pH2

(5)

jH2,3 = −f1 (cA,near) amaxi0,H2
e−αc,H2

L1ηH2 (6)

jO2,1 = f2 (cA,near) amaxi0,O2
·

[

eαa,O2
L2ηO2 − f3 (pO2

) e−αc,O2
L2ηO2

]

(7)

jO2,3 = L4amaxkm,O2
pO2

(8)

Due to the double layer capacity at the interface
between the solid and the liquid phase an additional
term has to be defined :

jdlc,1 = jdlc,3 = Cdl
(

1 − Uζ
) ∂η

∂t
(9)

The total current density can thereby be calculated
as

j = jmain + jO2
+ jH2

+ jdlc (10)

The overpotentials η, ηO2
and ηH2

are defined as

ηx = φs − φl − Ux (11)

and the terminal voltage can be calculated by

Ucell = φs|left − φs|right (12)

Two further equations have to be considered ex-
pressing Ohm’s law in the liquid phase

0 =
∂

∂x

(

L5
∂φl

∂x

)

+
∂

∂x

[

L6
∂cA,near

∂x

]

+ j (13)

and Ohm’s law in the solid phase

0 =
∂

∂x

(

L7
∂φs

∂x

)

− j (14)

The acid concentration is calculated separately
near the interface of the solid and liquid phase for
a small constant volume εl,near and further away:

εl,near
∂cA,near

∂t
= K5jmain + K6jO2

+K7jH2
+ L8knear,far (15)

∂εl,farcA,far

∂t
=

∂

∂x

(

L9
∂cA

∂x

)

− L10knear,far (16)

The local utilization of the active material U is de-
fined by

∂U1

∂t
= −

jmain

Qmax
and

∂U3

∂t
=

jmain

Qmax
(17)

The constants Kx only depend on the geometry of
the cell whereas the coefficients Lx also depend on
temperature, acid concentration and cell pressure.
The values of the remaining coefficients are esti-
mated by the parameter identification algorithm de-
scribed below. For a more detailed description of
the model the reader is referred to [1–5].

To solve this set of differential equations the
control volume method as described in [3, 5, 8] is
applied.
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PARAMETER IDENTIFICATION
The parameter identification algorithm is used

to estimate the initial values of 15 battery parame-
ters, e.g. the utilizations U of the active materials,
the fraction of liquid volume εl, the acid concentra-
tions cA and the double layer capacity Cdl. Some
of the parameters are spatially distributed. Their
initial values are however assumed constant within
the regions of the cell. This is a valid simplifica-
tion if the battery is carefully discharged with a
low current to equalize the material distributions.
A long rest period prior to the reference measure-
ment ensures a constant acid concentration in the
whole cell.

The cell voltage shows a highly nonlinear de-
pendance on the model parameters. The error func-
tion, e.g. the sum of squared errors, contains many
local minima that result in unacceptable identifi-
cation results. Therefore deterministic local opti-
mization algorithms, like the Gauss–Newton algo-
rithm, are not well suited for the parameter identi-
fication [9]. Global stochastic optimization meth-
ods, like genetic algorithms, have shown to be ca-
pable of finding the global optimum of multimodal
functions. However, the necessary population size
for a good coverage of the parameter space results
in a very high computational burden in combina-
tion with the complex and time–consuming simu-
lation model.

With the proposed identification algorithm it is
tried to reduce the number of simulations needed
to obtain satisfactory results. Available expert
knowledge about the lead–acid battery model is
utilized during the identification process. The ex-
pert knowledge can be obtained from an analysis
of the model equations and from experiments with
the cell model. It is a qualitative description of
the influence of some of the battery parameters on
the voltage response of the model. The informa-
tion can be used to calculate the optimal values of
those parameters by means of an expert system. A
fuzzy inference system embedded in an optimiza-
tion loop is used for this purpose [10]. However,
the influence of a number of parameters on the sim-
ulation results cannot be predicted. These param-
eters are treated with a GA. The resulting combi-
nation of fuzzy control and a stochastic optimiza-
tion algorithm reduces the computational demands
of the stochastic algorithm while maintaining its
global search capabilities.

The structure of the combined identification
method is shown in figure 2. Based on the current

population, the genetic algorithm manipulates the
individuals to generate a new population accord-
ing to the principles of evolution [11]. This results
in new combinations of the parameters with unpre-
dictable behavior. The remaining parameters are
adjusted with a control loop containing the fuzzy
expert system. The difference between the simu-
lated and measured voltage responses of the bat-
tery is resolved into several different quality crite-
ria. They are calculated under consideration of the
specific current test pattern used as excitation sig-
nal. Every criterion rates a certain aspect of the
quality of the simulated parameter vector. The per-
formance numbers are closely linked to the expert
knowledge. The fuzzy inference system changes
the battery parameters according to the calculated
qualities and its rule base. This inner optimiza-
tion loop is repeated until some stopping criterion
is reached. It can be regarded as a control loop that
tries to compensate the difference between mea-
surement and simulation by adjusting the fuzzy–
controlled parameters. After the inner loop is ter-
minated, the next iteration of the genetic algorithm
is launched.

Genetic
Algorithm Battery

Simulation

Fuzzy
Controller

Voltage response
Model

parameters

Current test pattern

Figure 2: Block diagram of the parameter identifi-
cation algorithm.

EXCITATION SIGNAL
A special current pattern was designed for the

identification process. It is depicted in figure 3.
The curve was carefully chosen to excite all states
of the battery. It contains charge and discharge
pulses of different durations and idle times in the
whole range of the state of charge. The nonlinear
relationship between cell voltage and current inten-
sity is covered with different pulse amplitudes. The
excitation signal can be used for lead–acid cells of
different capacities by adapting the maximum cur-
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rent intensity. The changes of the battery behavior
with the state of charge are recorded by repeated
application of the pulse pattern.

The measurement starts with a completely dis-
charged battery. First a low charge current is ap-
plied for a longer time in order to reach a certain
state of charge of the cell. After that the pulse
pattern of figure 3 is applied. The first part con-
sists of a set of 20 alternating charge and discharge
pulses of short duration. The pulse time should be
short enough that the effect on the acid concentra-
tion in the cell is negligible (e.g. in the range of
100 ms). The current intensity is increased with a
constant ratio between adjacent pulses. The same
pulse block is then applied one more time. After
that comes another set of 20 alternating charge and
discharge pulses, but with a longer duration,e.g. 5
seconds, and a longer idle time between them. The
whole current pattern of figure 3 is subsequently
repeated until the pressure in the battery reaches a
predefined limit. Excessive gassing reactions begin
after the cell is fully charged and cause the pres-
sure rise. The measurement of the whole voltage
response of a real cell may take up to 10 hours.
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Figure 3: Current pattern used for battery identifi-
cation.

The battery should be completely discharged
before applying the test pattern. The discharge
should be performed with a small current in or-
der to equalize the material distributions within the
cell. A rest period should follow after that to obtain
a constant acid distribution. These steps are neces-
sary to justify the simplifications made regarding
the battery parameters.

Error function and quality criteria
A common choice for the error functions F of

identification problems is the sum of some norm of
the prediction errors [12]. For the present battery
identification the sum of absolute values of the er-
rors is considered,

F =

n
∑

i=1

|U(ti) − UM(ti)| (18)

with the voltage response of the model UM and the
measured cell voltage U . The sum is taken over
all n discrete measurement samples. The simu-
lated voltage is interpolated. The disadvantage of
(18) is that the model responses to different excita-
tions, like charge pulses, idle times and discharge
pulses, are merged into one number. Some model
parameters influence all the characteristic model
responses. But there are also parameters that only
act on specific characteristics. This information is
lost by summing up the errors.

The fuzzy expert system uses more specific in-
formation to adjust its battery parameters. Distinct
battery characteristics are required that are influ-
enced by certain parameters. For that purpose 11
quality criteria Qi are extracted from the simulated
and measured voltage responses. Each of them is
a measure of the difference between the real cell
behavior and the model response. The criterion
Q1 is the voltage deviation at the low charge cur-
rent between the pulse sequences, averaged over
the whole state of charge. Q3 describes the dif-
ference of the open circuit voltages, as depicted in
figure 4. The value is averaged over all pulse se-
quences. Criterion Q4 is the averaged difference
in the increase of the open circuit voltage between
subsequent pulse sequences.

The performance measure Q5 is the difference
of the heights of the voltage responses to a charge
current pulse, as illustrated in figure 5. The value
is averaged over all pulse sequences between the
start of the measurements and the start of exces-
sive gassing reactions. The increase in the voltage
jumps between subsequent pulse sequences is as-
sessed through criterion Q7. When the utilization
of the active cell materials approaches zero, a sharp
rise in the cell voltage occurs even at low charge
currents. The time of this rise is rated by quality
criterion Q9, as shown in figure 6.

The sum of absolute values of the quality char-
acteristics is a measure of the model accuracy.
However, only certain major effects can be sam-
pled. Small deviations between real cell and model
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Figure 4: Quality criterion Q3: Difference of the
open circuit voltages.

cannot be tracked with the quality measures. By
using the sum of the qualities as error function, the
emphasis can be put on identifying the most im-
portant battery characteristics. For the present ap-
proach a combination of the sum of absolute values
of the prediction errors and the sum of quality mea-
sures is used:

F = w1 ·
n

∑

i=1

|u(ti) − uM(ti)| + w2 ·
k

∑

j=1

Qj (19)

The weights w1 and w2 determine the compromise
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Figure 5: Quality criterion Q5: Difference of the
height of the voltage response to a charge current
pulse.
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Figure 6: Quality criterion Q9: Difference of
the time of voltage rise when the battery is fully
charged.

between sampling the major effects only and eval-
uating the overall performance of the model. They
are chosen to balance the contributions of the sin-
gle terms.

Genetic Algorithm
A floating point GA [7, 11] is used as stochas-

tic optimization strategy for the battery parameters
with unpredictable behavior. The seven parameters
ζ, εl,near, amaxkPbSO4

, amaxi0, αa,O2
, amaxi0,O2

and
amaxkm,O2

are identified with the GA.
For every individual, the GA calls the inner

fuzzy optimization loop. The inner loop performs
some iterations and returns the error function value
of the individual. The fitness of the individuals
is determined based on a linear ranking of the er-
ror function values (equation 19) of the popula-
tion. The selection of a part of the population
for recombination is made with stochastic univer-
sal sampling [11]. The recombination probability
of the individuals is proportional to their fitness.
The following recombination operation generates
new individuals from the selected parents by inter-
mediate crossover [7]. The parameters of the new
individuals are mutated with a low probability. The
mutation range follows a normal distribution. The
fitness of the new individuals is calculated after in-
voking the inner optimization loop. They are af-
terwards reinserted into the population. The GA is
based on an elitist strategy. The individuals with
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the lowest fitness are always discarded in favor of
the new ones. The next iteration is started with the
selection until a stopping criterion causes the ter-
mination of the algorithm.

Fuzzy Expert System
Eight battery parameters are estimated with the

fuzzy expert system. It adjusts the parameter val-
ues for a given set of GA optimization parameters
to give the best possible model response [10]. The
block diagram of this inner optimization loop is
shown in figure 7. The battery parameters given by
the GA are fed into the model and remain constant
during the following steps. The initial values for
the inner optimization parameters are taken from
the individual of the preceding GA generation that
is closest to the current individual. This is a kind of
information sharing between the individuals of dif-
ferent generations. The battery simulation is per-
formed with the initial parameter values in the first
iteration. Afterwards the quality criterions are cal-
culated from the voltage response. They are used
as inputs of the fuzzy controller, which is imple-
mented as a linguistic (Mamdani–type) fuzzy infer-
ence system [13]. Based on the expert knowledge
formulated in rules, the controller produces output
factors. The battery parameters are multiplicatively
connected with the factors. The subsequent iter-
ation is started with the modified fuzzy loop pa-
rameters. The inner loop is terminated if the pre-
scribed maximum number of iterations is reached
or if there is no significant improvement. The auto-
matic stepwidth adaption is monitoring the actual
and preceding values of the quality measures. If
the fuzzy output factors show to be too conserva-
tive or too big, the stepwidths of the fuzzy outputs

Quality
extraction

Battery simulation

Fuzzy
inference
system

Voltage responseGA parameters

Fuzzy parameters

Automatic
stepwidth
adaption z-1

Figure 7: Block diagram of the internal fuzzy con-
trol loop.

are multiplicatively altered.
The input variables of the fuzzy system are nor-

malized and then fuzzified with the three member-
ship functions negative, zero and positive, as shown
in figure 8. Gaussian and spline–based function
definitions are used. Similarly, the fuzzy outputs
consist of three membership functions smaller,
equal and bigger. The minimum and maximum op-
erators are used for the and–operation, implication
and accumulation. Defuzzification is performed
with the center of gravity method [13].
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Figure 8: Membership functions for the linguistic
variables Qi.

The expert knowledge was accumulated by an-
alyzing the underlying system of partial differential
equations and performing simulation studies. It is
a qualitative description of the influence of some
battery parameters on the quality characteristics Qi
of the model output. A number of 33 rules was es-
tablished for the fuzzy controller. They combine at
most two input variables with two output factors.
A few examples are:

IF Q1 = positive AND Q3 = positive THEN
knear,far = equal AND cA,near = smaller

IF Q1 = zero AND Q3 = negative THEN knear,far

= bigger AND cA,near = bigger

IF Q9 = positive THEN U = smaller

IF Q9 = negative THEN U = bigger

A demonstration of the performance of the
fuzzy optimization loop is given in figure 9. The
upper subplot compares the simulated voltage re-
sponse after the first simulation run with the mea-
sured cell voltage. There is a distinct deviation of
the simulation. The situation after the third itera-
tion shows clear improvement, as depicted in the
central subplot. After five calls of the simulation,
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Figure 9: Performance of the internal fuzzy con-
trol loop: Simulated (black) and measured (gray)
voltage responses after the first, third and fifth iter-
ation.

the fuzzy control loop achieved a very good fit of
the model parameters.

IDENTIFICATION RESULTS
The proposed identification algorithm was

tested on several real lead–acid batteries. As an
example, the identification results for a battery of
the type Hawker Cyclon with a nominal capacity
of 5 Ah are shown. The reference measurements
were taken at an ambient temperature of 20◦C. The
proposed excitation signal was applied with a max-
imum charge and discharge current of 5 A. The
pulse width was set to 0.2 s for the short pulses and
15 s for the long pulses. The result was obtained
after 20 generations of the GA with a population
size of 45.

The complete reference curve of cell voltage
and the identification result are depicted in figure
10. The response to a pulse sequence at a low state
of charge of the cell is shown in detail in figure 11.
The response at a high state of charge, where ex-
cessive gassing occurs, is illustrated in figure 12.
There are some imperfections of the model, espe-
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Figure 10: Identification result for a Hawker Cy-
clon 5Ah lead–acid cell.

1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2

x 10
4

1.85

1.9

1.95

2

2.05

2.1

2.15

Time [s]

C
el

l v
ol

ta
ge

 [V
]

measured
simulated

Figure 11: Detail of the identification result: Pulse
sequence at low state of charge.
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Figure 12: Detail of the identification result: Pulse
sequence at high state of charge.
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cially in the transient behavior. Nevertheless, the
combination of the physical battery model and the
proposed identification algorithm leads to a reason-
able prediction of the cell behavior in the whole
range of the state of charge.

CONCLUSION
An accurate lead–acid battery model consisting

of a system of nonlinear partial differential equa-
tions was presented. It depends on a variety of pa-
rameters that cannot be measured. Periods of up
to 15 hours may have to be simulated for parame-
ter identification, which makes the solution of the
forward problem quite time–consuming. Therefore
a novel approach for the identification of the bat-
tery parameters was developed that integrates read-
ily available expert knowledge regarding the influ-
ence of parameters on specific battery characteris-
tics. These parameters are adjusted by a fuzzy con-
troller containing the expert knowledge. The fuzzy
control loop is invoked by a genetic algorithm that
optimizes the unpredictable parameters. The pre-
sented results show that the novel method is able
to provide good solutions. Due to the specialized
expert knowledge, the method is only applicable
to battery identification problems. Future research
will be focussed on extending the method to a more
general class of problems by automatic accumula-
tion of expert knowledge from training data sets.
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